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2.1 Let (M, g) be a smooth Riemannian manifold and γ : [a, b] → M a curve of class C1. Recall
that the length of γ is de�ned as

ℓ(γ)
.
=

� b

a

∥γ̇(t)∥ dt.

We will also de�ne the energy of γ by the relation

E(γ) .
=

� b

a

∥γ̇(t)∥2 dt.

(a) Show that ℓ(γ) is invariant under reparametrizations of γ (i.e. that it is the same for the
curves γ and γ ◦ h, where h : [a′, b′] → [a, b] is any C1 bijection). Is the energy also
similarly invariant under reparametrizations?

(b) Show that (
ℓ(γ)

)2
⩽ (b− a)E(γ).

When does equality hold above?

Solution. (a) Let h : [a′, b′] → [a, b] be a C1 bijection; it is then necessary that h is either everywhere
increasing or decreasing; without loss of generality, we can assume that it is increasing, so that h′ ⩾ 0
and h(a′) = a, h(b′) = b. We can then compute using the change of variables t = h(s):

ℓ(γ ◦ h) =

� b′

a′
∥ d

ds
(γ ◦ h)(s)∥ ds

=

� b′

a′
∥γ̇ ◦ h(s) · h′(s)∥ ds

=

� b′

a′
∥γ̇ ◦ h(s)∥ |h′(s)|ds

t=h(s)
=

� b

a

∥γ̇(t)∥ dt

= ℓ(γ).

In the case when h is decreasing, we obtain the same result by noting that dt = −h′(s) ds and
h(a′) = b, h(b′) = a.

The energy, on the other hand, is not invariant under reparametrizations, as can be explicitly
veri�ed by comparing the energy of the curves γ, γ̃ : [0, 1] → R

2 with γ(t) = (t, t) and γ̃(t) = (t2, t2).

(b) Using the Cauchy�Schwarz inequality for integrals, we can calculate:

(
ℓ(γ)

)2
=

(� b

a

∥γ̇(t)∥ dt
)2

Cauchy�Schwarz

⩽
(� b

a

∥γ̇(t)∥2 dt
)( � b

a

1 dt
)
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= (b− a)E(γ).

Equality holds in the case of the Cauchy�Schwarz inequality only when the integrand is a constant

function; thus,
(
ℓ(γ)

)2
= (b − a)E(γ) only when ∥γ̇(t)∥ is constant, i.e. γ is parametrized with

constant speed.

2.2 Let (M, g) be a smooth connected Riemannian manifold. For any p, q ∈ M, let Cp,q be the set
of all piecewise C1 curves γ : [0, 1] → M such that γ(0) = p and γ(1) = q. Recall that the
Riemannian distance function dg : M×M → R is de�ned by the formula

dg(p, q) = inf
{
ℓ(γ) | γ ∈ Cp,q

}
where ℓ(γ) is the length of γ with respect to the Riemannian metric g. Show that (M, dg) is
indeed a metric space.

Solution. First of all, we should notice that the function dg : M×M → R is well-de�ned, since the

set
{
ℓ(γ)|γ ∈ Cp,q

}
is never empty (as M was assumed to be connected). In order to show that dg

de�nes a metric on M, we have to establish the following three properties:

1. Symmetry: dg(p, q) = dg(q, p) for all p, q ∈ M.

2. The triangle inequality: dg(p, q) ⩽ dg(p, r) + dg(r, q) for all p, q, r ∈ M.

3. Positivity: dg(p, q) ⩾ 0, with equality holding only when p = q.

Property 1 follows readily by noting that, if γ : [0, 1] → M is a piecewise C1 curve satisfying
γ(0) = p and γ(1) = q (and thus belongs to Cp,q), then the curve −γ, de�ned by

−γ(s)
.
= γ(1− s)

belongs to Cq,p (since −γ(0) = q, −γ(1) = p) and

ℓ(−γ) = ℓ(γ)

(in view of Ex. 2.1). Thus,

dg(q, p) = inf
{
ℓ(γ̃) | γ̃ ∈ Cq,p

}
⩽ inf

{
ℓ(−γ) | γ ∈ Cp,q

}
= dg(p, q).

Repeating the same argument with the roles of p, q inverted, we deduce that dg(p, q) = dg(q, p).
In order to establish the triangle inequality, we argue as follows: If γ1 ∈ Cp,r and γ2 ∈ Cr,q, then

the concatenated curve γ1 ∪ γ2 : [0, 1] → M, de�ned by

γ1 ∪ γ2(s) =

{
γ1(2s), s ∈ [0, 1

2
],

γ2(2s− 1), s ∈ (1
2
, 1]

satis�es the following conditions:
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� γ1 ∪ γ2(0) = γ1(0) = p and γ1 ∪ γ2(1) = γ2(1) = q.

� γ1∪γ2 is piecewise C1, since it is piecewise C1 in the intervals [0, 1
2
] and [1

2
, 1] (where it coincides

with a smooth reparametrization of γ1 and γ2, respectively), and it is continuous at s = 1
2
, since

γ1(1) = γ2(0) = r.

Therefore, γ1 ∪ γ2 ∈ Cp,q. Moreover,

ℓ(γ1 ∪ γ2) =

� 1

0

∥ d

ds
(γ1 ∪ γ2)∥ ds

=

� 1
2

0

∥ d

ds
γ1(2s)∥ ds+

� 1

1
2

∥ d

ds
γ2(2s− 1)∥ ds

= ℓ(γ1) + ℓ(γ2).

Therefore, we can calculate:

dg(p, q) = inf
{
ℓ(γ) | γ ∈ Cp,q

}
⩽ inf

{
ℓ(γ1 ∪ γ2) | γ1 ∈ Cp,r, γ2 ∈ Cr,q

}
= inf

{
ℓ(γ1) + ℓ(γ2) | γ1 ∈ Cp,r, γ2 ∈ Cr,q

}
⩽ dg(p, r) + dg(r, q),

i.e. the triangle inequality holds.
Since ℓ(γ) ⩾ 0 for any piecewise C1 curve γ, it follows readily that dg(p, q) ⩾ 0 for any two points

p, q ∈ M. Thus, it only remains to show that

dg(p, q) = 0 ⇒ p = q.

To this end, we will argue by contradiction and we will assume that there exist points p, q ∈ M such
that dg(p, q) = 0 and p ̸= q. Let also (U , ϕ) be a local coordinate chart around p, with associated
coordinates (x1, . . . , xn). By shrinking U if necessary, we will assume that q /∈ U (this is possible
since p ̸= q). Our aim is to show that, for ϵ > 0 su�ciently small, a curve γ starting at p and
having length less than ϵ cannot escape U (and thus reach q); in order to show that, we will rely
on comparing the length (with respect to g) of any curve γ near p with the Euclidean length of its
image ϕ ◦ γ in R

n.
Let us consider the matrix [g](p) = [gij](p) of the components of g with respect to (x1, . . . , xn)

at the point p. Since [g](p) is a symmetric n × n matrix (where n = dimM), it is diagonalizable;
and because it is positive de�nite, its smallest eigenvalue λ is strictly positive. The last statement
implies that, for any vector V = (V 1, . . . , V n) ∈ R

n, we have

V T · [g](p) · V ⩾ λV T · V.

Since g was assumed to be a smooth Riemannian metric, the matrix g[p] varies continuously with
p ∈ U ; thus, there exists a constant δ1 > 0 such that

V T · [g](z) · V ⩾
1

4
λV T · V (1)
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for all points z in the coordinate ball Bδ1(p), where

Bδ1(p) =
{
z ∈ U :

( n∑
i=1

|xi(z)− xi(p)|2
) 1

2
< δ1

}
.

Note that, since U is an open neighborhood of p, by possibly choosing a smaller δ1 we can also assume
that

clos
(
Bδ1(p)

)
⊂ U .

(i.e. that clos
(
Bδ1(p) does not intersect the boundary of U ; a consequence of this is that, for ρ < δ1,

the closure of the coordinate ball Bρ(p) in M does not contain any point of the boundary ∂Bδ1(p).).
Let us consider the auxiliary metric

g̃E = (dx1)2 + · · ·+ (dxn)2

on U (note that this is simply the pull-back metric ϕ∗gE of the Euclidean metric on R
n via the map

ϕ : U → R
n). Then the inequality (1) can be rephrased as

g(v, v) ⩾
1

4
λg̃E(v, v) for all points q ∈ Bδ1(p), and tangent vectors v ∈ TqM. (2)

The above inequality now implies the following bound for curves in Bδ1(p): If γ̄ : [a, b] → Bδ1(p) is a
piecewise C1 curve, then

ℓ(γ̄) =

� b

a

√
g( ˙̄γ, ˙̄γ)∥ dt

⩾
1

2
λ

1
2

� b

a

√
g̃E( ˙̄γ, ˙̄γ)∥ dt

=
1

2
λ

1
2

� b

a

√
ϕ∗gE( ˙̄γ, ˙̄γ)∥ dt

=
1

2
λ

1
2

� b

a

√
gE
( d
dt
(ϕ ◦ γ̄), d

dt
(ϕ ◦ γ̄)

)
∥ dt

and, thus,

ℓ(γ̄) ⩾
1

2
λ

1
2 ℓE(ϕ ◦ γ̄), (3)

where ℓE(ϕ ◦ γ̄) is the Euclidean length of the curve ϕ ◦ γ̄ : [a, b] → R
n.

Suppose, now, that ϵ > 0 has been chosen small enough in terms of λ and δ1 (as we will see in a

moment, it su�ces to choose ϵ ⩽ 1
4
λ

1
4 δ1). Since dg(p, q) = 0, the de�nition of dg implies that there

exists a curve γ : [0, 1] → M with γ ∈ Cp,q such that

ℓ(γ) ⩽ ϵ.

Our aim is to show that, if ϵ has been chosen appropriately, the curve γ must be contained in
clos(Bδ1(p)) ⊂ U . We will achieve this using a continuity argument: Let us de�ne s0 ∈ (0, 1] by the
relation

s0 = sup
{
s∗ ∈ [0, 1] : γ|[0,s∗] ⊂ Bδ1(p)

}
.
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Note that s0 > 0 since γ(0) = p ∈ Bδ1(p) and Bδ1(p). The de�nition of s0 also implies that

γ|[0,s0) = ∪s∗<s0γ|[0,s∗] ⊂ Bδ1(p). (4)

Since γ is continuous, we deduce that

γ(s0) ∈ clos
(
Bδ1(p)

)
.

Moreover, if s0 < 1, we must necessarily have that

γ(s0) ∈ ∂Bδ1(p). (5)

This can be seen as follows: if γ(s0) lies in the interior of clos
(
Bδ1(p)

)
(which is the same as Bδ1(p),

which is an open set), then, by continuity of γ, there exists an ϵ1 > 0 such that γ(s) ∈ Bδ1(p) for
all s ∈ [s0, s0 + ϵ), which, together with (4), contradicts the de�nition of s0 as the supremum of all
points s∗ with the property γ|[0,s∗] ⊂ Bδ1(p).
Thus, in order to show that s0 = 1, it su�ces to show that

γ(s0) ∈ Bδ1(p)
)
, (6)

i.e. that γ(s0) lies strictly in the interior of clos
(
Bδ1(p)

)
.

Since γ|[0,s0) ⊂ Bδ1(p), we can apply the bound (3) to get

ℓ
(
γ|[0,s0)

)
⩾

1

2
λ

1
2 ℓE(ϕ ◦ γ|[0,s0)).

Thus, since ℓ
(
γ|[0,s0)

)
⩽ ℓ(γ) ⩽ ϵ and ϵ < 1

4
λ

1
4 δ1, we obtain

ℓE(ϕ ◦ γ|[0,s0)) ⩽ 2λ− 1
2 ϵ ⩽

1

2
δ1.

Since the curve ϕ ◦ γ|[0,s0) in R
n starts from ϕ(p) and has Euclidean length at most 1

2
δ1, it must stay

within the closed Euclidean ball of radius 1
2
δ1 centered at ϕ(p); equivalently:

γ|[0,s0) ⊂ clos
(
B 1

2
δ1
(p)
)
.

Since γ is continuous, this implies that

γ(s0) ∈ clos
(
B 1

2
δ1
(p)
)
⊂ Bδ1(p),

i.e. (6) holds; therefore, s0 = 1. From the de�nition of s0, this implies that

γ|[0,1] ⊂ Bδ1(p).

But this is a contradiction, since γ(1) = q and we assumed that γ(q) lies outside U (and, hence,
Bδ1(p)).
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Rn

N = (0, . . . , 0, 1)

y

P (y)

0

Sn

2.3 For n ⩾ 1, let N = (0, 0, . . . , 0, 1) be the north pole of the unit sphere S
n in R

n+1. Let
P : Sn \N → R

n be the stereographic projection via N onto the hyperplane xn+1 = 0, that is
to say, for any y ∈ S

n \N , P (y) = (y1, . . . yn) is de�ned so that the point (y1, . . . , yn, 0) belongs
to the straight line in R

n+1 connecting N to y.

(a) Show that the round metric gSn , i.e. the metric induced on S
n from the Euclidean metric

on R
n+1, takes the following form in the coordinate chart determined by P on S

n \N :

gSn =
4(

1 + ∥y∥2
)2(dy21 + dy22 + . . .+ dy2n

)
(b) Show that the map P : (Sn, gSn) → (Rn, gE) (where gE is the Euclidean metric on R

n) is
conformal.

(c) Consider the map F : Rn \ 0 → R
n \ 0 given by

F (x) =
x

∥x∥2
.

Show that, in the coordinate chart above, the map F de�nes an isometry of Sn \ {N,S}
to itself, where S = (0, 0, . . . , 0,−1) is the south pole of Sn. Does this map extend as an
isometry on the whole of Sn?

Solution.(a) It is easy to verify that the map P : Sn \N → R
n, sending (z1, . . . , zn+1) ∈ S

n \N to
(y1, . . . , yn) ∈ R

n, takes the form

yi =
zi

1− zn+1
.

Using the fact that ∥z∥2 =
∑n+1

i=1 (z
i)2 = 1 on S

n, we also obtain the relation

zn+1 =
∥y∥2 − 1

∥y∥2 + 1
.

The inverse map P−1 (i.e. the parametrization of Sn \N by R
n) takes the form

P−1(y1, . . . , yn) =
( 2

1 + ∥y∥2
y1, . . . ,

2

1 + ∥y∥2
yn,

∥y∥2 − 1

∥y∥2 + 1

)
.
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The metric gSn on S
n \N in the parametrization by the map P−1 is simply the pull-back of the

Euclidean metric g
(n+1)
E on R

n+1 through P−1. One way to compute gSn is, thus, to compute the
di�erential of the map P−1 and use the formula(

P−1
∗ g

(n+1)
E

)
ij
= (g

(n+1)
E )αβ

∂(P−1)α

∂yi
∂(P−1)β

∂yj
.

A faster way is to use the fact that, since

g
(n+1)
E =

n+1∑
α=1

(dzα)2, (7)

we have

P−1
∗ g

(n+1)
E =

n+1∑
α=1

(P−1
∗ dzα)2 (8)

=
n+1∑
α=1

(
d(P−1(y))α

)2
.

Since, as we computed earlier, (
P−1(y)

)i
=

2

1 + ∥y∥2
yi for i ⩽ n,

(
P−1(y)

)n+1
=

∥y∥2 − 1

∥y∥2 + 1
,

we have:

d
(
P−1(y)

)i
= d
( 2

1 + ∥y∥2
yi
)
=

2

1 + ∥y∥2
dyi − 4

(1 + ∥y∥2)2
yi

n∑
j=1

yjdyj for i ⩽ n,

d
(
P−1(y)

)n+1
= d
(∥y∥2 − 1

∥y∥2 + 1

)
=

4

(1 + ∥y∥2)2
n∑

j=1

yjdyj.

Thus, from (8) we infer:

P−1
∗ g

(n+1)
E =

n∑
i=1

( 2

1 + ∥y∥2
dyi − 4

(1 + ∥y∥2)2
yi

n∑
j=1

yjdyj
)2

+
( 4

(1 + ∥y∥2)2
n∑

j=1

yjdyj
)2

=
4

(1 + ∥y∥2)2
n∑

i=1

(dyi)2.

(b) The statement that the map P : (Sn \N, gSn → (Rn, gE) is conformal is equivalent to saying
that, in the (y1, . . . , yn) coordinates on S

n \N determined by the chart P , the metric gSn takes the
form

gSn = f · gE
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for some smooth and positive function on Sn\N , where gE =
∑n

i=1(dy
i)2. In part (a) of this exercise,

we established that this is indeed the case, with

f(y) =
4

(1 + ∥y∥2)2
.

(c) The map F corresponds to a re�ection of Sn \ {N,S} across the hyperplane {xn+1 = 0};
hence, it should be obvious that it is an isometry and that it extends as an isometry to the whole
of Sn. However, let us verify this fact by computing F∗gSn in the stereographic coordinate system
considered here.

Since

gSn =
4

(1 + ∥y∥2)2
n∑

i=1

(dyi)2,

we calculate similarly as before for yi = F i(x) = xi

∥x∥2 (noting that ∥F (x)∥ = 1
∥x∥):

F∗gSn =
4

(1 + ∥F (x)∥2)2
n∑

i=1

(F∗dy
i)2

=
4

(1 + ∥F (x)∥2)2
n∑

i=1

(dF i(x))2

=
4

(1 + 1
∥x∥2 )

2

n∑
i=1

( dxi

∥x∥2
−

n∑
j=1

2xixjdxj

∥x∥4
)2

=
4∥x∥4

(∥x∥2 + 1)2

n∑
i=1

( 1

∥x∥4
(dxi)2 − 4

∥x∥6
n∑

j=1

xixjdxidxj +
4(xi)2

∥x∥8
n∑

j=1

n∑
k=1

xjxkdxjdxk
)

=
4

(∥x∥2 + 1)2

( n∑
i=1

(dxi)2 − 4

∥x∥2
n∑

i=1

n∑
j=1

xixjdxidxj +
n∑

i=1

4(xi)2

∥x∥4
n∑

j=1

n∑
k=1

xjxkdxjdxk
)

=
4

(∥x∥2 + 1)2

n∑
i=1

(dxi)2

= gSn .

Thus, F is a local isometry; since F is obviously a homeomorphism from R
n \ 0 to itself, we deduce

that F de�nes an isometry from S
n \ {N,S} to itself. It is also easy to verify that any sequence

{yk}k∈N converging to 0 is mapped to a sequence F (yk) converging to ∞, and vice versa; hence, F
extends as a continuous map from S

n to itself, mapping N to S; by continuity, this extended map F
has to be an isometry.

2.4 Let M be a smooth manifold of dimension n.

(a) Let V be a smooth vector �eld on M such that V (p) ̸= 0 for some p ∈ M. Show that
there exists an open neighborhood U of p and a local coordinate system (y1, . . . , yn) on U
such that V = ∂

∂y1
on U .
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(b) For V as above, let W be another smooth vector �eld on M such that W (p) ̸= 0 and
W (p) ̸= V (p). Is it always true that we can �nd a local coordinate system (y1, . . . , yn) on
a neighborhood U of p as before such that V = ∂

∂y1
and W = ∂

∂y2
on U? (Hint: Consider

the commutator [V,W ](f)
.
= V (W (f))−W (V (f)) for a suitable function f ∈ C∞(M).)

(c) Let ω be an 1-form on M such that ω(p) ̸= 0 for some p ∈ M. Does there always exist a
local coordinate system (y1, . . . , yn) on a neighborhood U of p such that ω = dy1 in U?

Solution. (a) Let us start by �xing a coordinate chart ϕ′ : U ′ → ϕ′(U ′) ⊂ R
n on an open neigh-

borhood U ′ of p in M. By composing ϕ′ on the left with a translation y → y + y0 in R
n, we can

assume without loss of generality that ϕ′(p) = 0. Let (y1, . . . , yn) be the local coordinate system on
U ′ associated to ϕ (note that yi(p) = 0 for i = 1, . . . , n). In this coordinate system, the vector �eld
V can be expressed as

V = V i ∂

∂yi
.

Since V (p) ̸= 0, at least one of the components V i(p) must ne non-zero; without loss of generality
we can assume that V 1(p) ̸= 0 (otherwise, we can simply relabel the coordinate functions). Since V
is a smooth vector �eld, V 1(p) ̸= 0 in an open neighborhood W of p.

We will construct the coordinate system (x1, . . . , xn) by introducing an appopriate change of
coordinates on a neighborhood of 0 in R

n and then pulling back these new coordinates to M via the
chart ϕ′. More precisely, let Ψ : V ⊂ R

n → V ′ ⊂ ϕ′(U ′) be a di�eomorphism between subsets of Rn.
Then, it is easy to verify that, in the local coordinate system (x1, . . . , xn) on (ϕ′)−1(V ′) ⊂ U ′ ⊂ M
associated to the coordinate chart ϕ = Ψ−1◦(ϕ′)−1 on (ϕ′)−1(V),1 the coordinate vector �elds { ∂

∂xi}ni=1

can be expressed in terms of { ∂
∂yi

}ni=1 by the relation

∂

∂xi
= ∂iΨ

j · ∂

∂yj

(since the expression of the coordinates yi as functions of xi is yi = Ψi(x)). Therefore, in order to
construct a local coordinate system (x1, . . . , xn) around p in which V = ∂

∂x1 , it su�ces to construct
a smooth function Ψ : W → R

n for a domain V ⊂ R
n containing 0 such that:

1. Ψ(0) = 0,

2. DΨ|x=0 is invertible,

3. ∂1Ψ
i = V i ◦ (ϕ′)−1 ◦Ψ in an open neighborhood V ⊂ W of 0.

In view of the inverse function theorem, Condition 2 above would imply that Ψ is a local di�eo-
morphism when restricted to a (possibly small) open neighborhood V of 0. Since 0 ∈ ϕ′(U ′) and
Ψ(0) = 0 (according to Condition 1), by possibly choosing V even smaller, we can guarantee that
Ψ(V) ⊂ ϕ′(U ′); hence V i ◦ (ϕ′)−1 ◦ Ψ (in the statement of Condition 3) would be a well de�ned
function on V .

1Recall that, in this case, xi = (Ψ−1)i ◦ ϕ′; thus, yi = (ϕ′)i = (Ψ ◦Ψ−1 ◦ ϕ′)i = (Ψ(x))i.
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In order to construct a local di�eomorphism Ψ as above, we will make use of the �ow map
associated to the vector �eld V̄ = (V 1 ◦ (ϕ′)−1, . . . , V n ◦ (ϕ′)−1) on ϕ′(U ′) ⊂ R

n (note that this is
simply the pushforward of the vector �eld V via the map ϕ′). For a smooth vector �eld V̄ de�ned
on an open domain Ω of Rn, the classical theory of ODEs guarantees the existence of an open set
Ω ⊂ R× Ω containing {0} × Ω and a smooth map Ψ̃ : Ω → Ω such that{

∂tΨ̃(t; x̄) = V̄ (Ψ̃(t; x̄)),

Ψ̃(0; x̄) = x̄.
(9)

(this statetement can be equivalently stated in a more familiar language as follows: The initial value
problem {

∂tx = V̄ (x),

x(0) = x0 ∈ Ω

admits a unique smooth solution x[x0, ·] : Ix0 → Ω on a maximal open interval Ix0 ⊆ R containing 0;
moreover, x[x0, ·] and Ix0 depend smoothly on the initial value x0.)

Let Ψ̃ : Ω → R
n be the map obtained by applying the above result with Ω = ϕ′(U ′). Let δ > 0

be small enough so that (−δ, δ) × Bδ[0] ⊂ Ω (where B
(n)
δ [0] is the Euclidean ball around 0 ∈ R

n of

radius δ). Let us consider the map Ψ : (−δ, δ)×B
(n−1)
δ [0] → R

n de�ned by

Ψ(x1, . . . , xn) = Ψ̃(x1; 0, x2, . . . , xn)

(this is simply the map that takes each point on the surface {x̄1 = 0} ∩ Bδ[0]
(n) and maps it to its

image under the �ow of the vector �eld V̄ for time t = x1). In view of (9), we can readily compute:

1. Ψ(0) = Ψ̃(0; 0) = 0.

2. We can calculate at (x1, . . . , xn) = (0, . . . , 0):

∂1Ψ
j(0) = ∂tΨ̃

j(t; x̄1, . . . , xn)|(t;x̄1,...,xn)=(0;0,...,0) = V̄ j(0) for j = 1, . . . , n

and, for i ⩾ 2:

∂iΨ
j(0) = ∂x̄iΨ̃j(t; x̄1, . . . , xn)|(t;x̄1,...,xn)=(0;0,...,0)

= δji .

Therefore, the matrix of the di�erential DΨ at 0 takes the form

[DΨ]|x=0 =


V̄ 1(0) V̄ 2(0) . . . V̄ n(0)
1 0 . . . 0
0 1 . . . 0
...

. . .

0 0 . . . 1

 ,

which is invertible since V̄ 1(0) = V 1(p) ̸= 0.
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3. We have everywhere on (−δ, δ)×B
(n−1)
δ [0]:

∂1Ψ(x1, . . . , xn) = ∂tΨ̃(t; x̄1, . . . , x̄n)|(t;x̄1,x̄2,...,x̄n)=(x1;0,x2,...,xn)

= V̄
(
Ψ̃(x1; 0, x2, . . . , xn)

)
= V̄

(
Ψ(x1, . . . , xn)

and, hence
∂1Ψ

i = V̄ i ◦Ψ = V i ◦ (ϕ′)−1 ◦Ψ.

Therefore, setting V .
= (−δ, δ)×B

(n−1)
δ [0], the map Ψ de�ned above satis�es Conditions 1�3; hence,

as explained earlier, ϕ = Ψ−1 ◦ ϕ′ : (ϕ′)−1(Ψ(V)) ⊂ U ′ → V is a coordinate chart around p in which

∂

∂x1
= V.

(b) No this is not true. In any local coordinate system (x1, . . . , xn), the coordinate vector �elds
commute with each other, i.e. for any f ∈ C∞(M):

[
∂

∂xi
,

∂

∂xj
](f)

.
=

∂

∂xi

( ∂

∂xj
f
)
− ∂

∂xj

( ∂

∂xi
f
)

(note that, for any two vector �elds X, Y ∈ Γ(M), the commutator [X, Y ] is also a vector �eld since,
when applied to smooth functions by [X, Y ](f) = X(Y f)−Y (Xf), it satis�es the product rule; this
will be an exercise for next week). Thus, if [V,W ] ̸= 0 for V,W ∈ Γ(M), then these vector �elds
cannot be simultaneously written as coordinate vector �elds in any local chart. An example of two
such vector �elds is (in a given coordinate chart (x1, . . . , xn),

V =
∂

∂x1
, W = x1 ∂

∂x2
,

since

[V,W ] =
∂

∂x1

(
x1 ∂

∂x2

)
− x1 ∂

∂x2

( ∂

∂x1

)
=

∂

∂x2
̸= 0.

(c) No; in fact, any 1-form ω on an open set U ⊂ M that can be written as df for some f ∈ C∞(U)
(i.e. is locally exact) is also locally closed, i.e. its components satisfy in any local coordinate system
(x1, . . . , xn) in U :

∂ωj

∂xi
− ∂ωi

∂xj
= 0

(since ωi =
∂f
∂xi in this case). For instance, the 1-form ω̄ on R

2 wich takes the form (in Cartesian
coordinates)

ω̄ = x2dx1

satis�es
∂ω1

∂x2
− ∂ω2

∂x1
= 1 ̸= 0

and, hence, cannot be written as df for any smooth function f on any domain of R2.
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*2.5 Recall that the real projective space Pn(R) is the space of straight lines in Rn+1 passing through
the origin. In other words, Pn(R) is the space of equivalence classes [x] = {y ∈ R

n+1 \ {0} : y =
λx, λ ̸= 0} in R

n+1 \ {0}.
The space P

n(R) has a natural manifold structure; a smooth atlas on P
n(R) is given by

{U (k), ϕk}n+1
k=1 , where

U (k) =
{
[(x1, . . . , xn+1)] ∈ P

n(R) : xk ̸= 0
}

and the maps ϕk : U (k) → R
n+1 are homeomorphisms de�ned by the following relation for ϕ−1

k :

ϕ−1
k (y1, . . . , yn) =

[
(x1, . . . , xn+1)

]
with xj =


yj for j ⩽ k − 1,

1 for j = k,

yj−1 for j ⩾ k + 1.

◦ Show that the transition maps ϕi ◦ ϕ−1
j , i ̸= j ∈ {1, . . . , n + 1}, are of class C∞ (in fact,

real analytic) on their domain of de�nition.

Let us equip P
n(R) with the standard projective metric gPn ; the components of the matrix for

the metric in each of the coordinate charts associated to ϕk above take the following form:

(gPn)ij =
1

1 + ∥y∥2
(
δij −

yiyj

1 + ∥y∥2
)
.

◦ Show that the natural map F : (Sn, gSn) → (Pn, gPn) de�ned by F(x) = [x] (i.e. sending
each point on S

n ⊂ R
n+1 to the corresponding straight line connecting it to 0) is a local

isometry.

◦ Does there exist a global isometry between (Sn, gSn) and (Pn, gPn)? (Hint: Compare the
volumes of (Sn, gSn) and (Pn, gPn).)

Solution. ◦ For any k ∈ {1, . . . , n+ 1}, we have the following expressions for the maps ϕ−1
k and ϕk:

ϕ−1
k (y1, . . . , yn) =

[
(x1, . . . , xn+1)

]
with xj =


yj for j ⩽ k − 1,

1 for j = k,

yj−1 for j ⩾ k + 1.

and

ϕk([(x
1, . . . , xn+1)]) = (

x1

xk
, . . . ,

xk−1

xk
,
xk+1

xk
, . . . ,

xn+1

xk
).

Note also that, for any a ̸= b ∈ {1, . . . , n + 1}, we can describe the intersection of the domains U (a)

and U (b) as follows:
U (a) ∩ U (b) =

{[
(x1, . . . , xn)

]
: xa ̸= 0 and xb ̸= 0

}
.

Thus:

ϕa

(
U (a) ∩ U (b)

)
=

{
R
n \ {yb ̸= 0}, if b < a,

R
n \ {yb−1 ̸= 0}, if b > a.

Therefore, for any a ̸= b ∈ {1, . . . , n+ 1}, we can directly compute that the transition map ϕb ◦ ϕ−1
a

maps ϕa

(
U (a) ∩ U (b)

)
to ϕb

(
U (a) ∩ U (b)

)
by the following formulas:

Page 12



EPFL� Spring 2025

SOLUTIONS: Series 2

Di�erential Geometry III:

Riemannian geometry
G. Moschidis

28 Feb. 2025

� If b < a:

ϕb ◦ ϕ−1
a (y1, . . . , yn) = (z1, . . . , zn) where zi =


yi

yb
, i ⩽ b− 1 or i ⩾ a+ 1,

yi+1

yb
, b ⩽ i ⩽ a− 1,

1
yb
, i = a.

� If b > a:

ϕb ◦ ϕ−1
a (y1, . . . , yn) = (z1, . . . , zn) where zi =


yi

yb
, i ⩽ a− 1 or i ⩾ b+ 1,

1
yb
, i = a,

yi−1

yb
, a+ 1 ⩽ i ⩽ b.

Thus, ϕa ◦ ϕ−1
b is a real-analytic homeomorphism.

◦ In order to show that F : Sn → P
n is a local isometry, we have to show that

F∗gPn = gSn .

To this end, it su�ces to show that this is true in the coordinate system on S
n \ {N} provided

by the stereographic projection P (see Ex. 2.3) and the coordinate system determined by ϕn+1

on U (n+1) ⊂ P
n, k ∈ {1, . . . , n} (even though these systems do not cover all of Sn and P

n, the
same arguments apply for any k ∈ {1, . . . , n+ 1} in the coordinate system covered by stereographic
projection on Sn\{(0, . . . , 0, xk = 1, 0, . . . , 0)} and on U (k) ⊂ P

n, simply by relabelling the coordinate
axis so that xk ↔ xn+1). The expression of the map F in these coordinate systems is simply the
composition ϕn+1 ◦ F ◦ P−1, which can be computed explicitly (using the formulas that we have for
each of those maps) as follows:

ϕn+1 ◦ F ◦ P−1(y1, . . . , yn) = ϕn+1 ◦ F
( 2

1 + ∥y∥2
y1, . . . ,

2

1 + ∥y∥2
yn,

∥y∥2 − 1

∥y∥2 + 1

)
= ϕn+1

([( 2

1 + ∥y∥2
y1, . . . ,

2

1 + ∥y∥2
yn,

∥y∥2 − 1

∥y∥2 + 1

)])
=
( 2y1

∥y∥2 − 1
, . . . ,

2yn

∥y∥2 − 1

)
(10)

Using the auxiliary formula

∥y∥d∥y∥ =
n∑

i=1

yidyi

(derived by di�erentiating the relation ∥y∥2 =
∑n

i=1(y
i)2) we can therefore, compute, in these co-

ordinates in the case when k = n + 1 using zi for the coordinates associated to P
n and yi for the

coordinates associated to Sn):

F∗gPn = F∗

( 1

1 + ∥z∥2
( n∑

i,j=1

(
δij −

zizj

1 + ∥z∥2
)
dzidzj

))
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=
1

1 + ∥F(y)∥2
n∑

i,j=1

((
δij −

(F(y))i(F(y))j

1 + ∥F(y)∥2
)
d(F(y))id(F(y))j

)

=
1

1 + 4∥y∥2
(∥y∥2−1)2

n∑
i,j=1

((
δij −

4yiyj

(∥y∥2−1)2

1 + 4∥y∥2
(∥y∥2−1)2

)
d
( 2yi

∥y∥2 − 1

)
d
( 2yj

∥y∥2 − 1

))

=
(∥y∥2 − 1)2

(∥y∥2 + 1)2

n∑
i,j=1

((
δij −

4yiyj

(∥y∥2 + 1)2
)
d
( 2yi

∥y∥2 − 1

)
d
( 2yj

∥y∥2 − 1

))
=

(∥y∥2 − 1)2

(∥y∥2 + 1)2

n∑
i,j=1

((
δij −

4yiyj

(∥y∥2 + 1)2
)( 2dyi

∥y∥2 − 1
− 4yi∥y∥

(∥y∥2 − 1)2
d∥y∥

)
×
( 2dyj

∥y∥2 − 1
− 4yj∥y∥

(∥y∥2 − 1)2
d∥y∥

))
=

(∥y∥2 − 1)2

(∥y∥2 + 1)2

n∑
i,j=1

((
δij −

4yiyj

(∥y∥2 + 1)2
)
×

×
( 4

(∥y∥2 − 1)2
dyidyj − 8∥y∥yi

(∥y∥2 − 1)3
dyjd∥y∥ − 8∥y∥yj

(∥y∥2 − 1)3
dyid∥y∥

− 16∥y∥2yiyi

(∥y∥2 − 1)4
(d∥y∥)2

))
=

(∥y∥2 − 1)2

(∥y∥2 + 1)2

(
n∑

i,j=1

4δijdy
idyj

(∥y∥2 − 1)2
− 16

(∥y∥2 − 1)2((∥y∥2 + 1)2)

n∑
i,j=1

yiyjdyidyj

− 8∥y∥
(∥y∥2 − 1)3

n∑
i,j=1

δij(y
idyjd∥y∥+ yjdyid∥y∥)

+
32∥y∥

(∥y∥2 − 1)3(∥y∥2 + 1)2

n∑
i,j=1

((yi)2yjdyjd∥y∥+ (yj)2yidyid∥y∥)

+
16∥y∥2

(∥y∥2 − 1)4

n∑
i,j=1

δijy
iyj(d∥y∥)2 − 64∥y∥2

(∥y∥2 − 1)4(∥y∥2 + 1)2

n∑
i,j=1

(yi)2(yj)2(d∥y∥)2
)

=
(∥y∥2 − 1)2

(∥y∥2 + 1)2

(
n∑

i,j=1

4δijdy
idyj

(∥y∥2 − 1)2
− 16∥y∥2

(∥y∥2 − 1)2(∥y∥2 + 1)2
(d∥y∥)2

− 16∥y∥2

(∥y∥2 − 1)3
(d∥y∥)2 + 64∥y∥4

(∥y∥2 − 1)3(∥y∥2 + 1)2
(d∥y∥)2

+
16∥y∥4

(∥y∥2 − 1)4
(d∥y∥)2 − 64∥y∥6

(∥y∥2 − 1)4(∥y∥2 + 1)2
(d∥y∥)2

)

=
4

(∥y∥2 + 1)2

n∑
i,j=1

δijdy
idyj
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= gSn .

◦ There is no global isometry between (Pn, gPn) and (Sn, gSn) (in fact, these two manifolds are
not even homeomorphic when n ⩾ 2, since π1(P

n) = Z2 and π1(S
n) = 0 in that case, but we will not

assume knowledge of homotopy invariants in this course). One way to see this is by comparing the
corresponding volumes (a global isometry between Riemannian manifolds always preserves volumes).
We will show that

VolgSn (S
n) = 2VolgPn (P

n). (11)

There are two ways to infer the above result:

− One is to notice that, when restricted to any one of the open hemispheres Sn
+ = S

n ∩ {xn+1 > 0}
and Sn

− = S
n∩{xn+1 < 0}, the map F is a bijection between Sn

± and U (n+1) ⊂ P
n. Therefore, since F

is a local isometry, it restricts to a global isometry between (Sn
+, gSn) and (U (n+1), gPn) (and similarly

for Sn
−). As a result:

VolgPn (U
(n+1)) = VolgSn (S

n
+) = VolgSn (S

n
−).

Notice that the set Pn \ U (n+1) is of measure 0 in P
n (its intersection with any one of the other

coordinate domains U (l), l ⩽ n, is a codimension 1 hypersurface) and thus does not contribute to the
volume of Pn. Similarly, Sn \ (Sn

+ ∪ S
n
+) (which is simply the equator of Sn) has volume 0. Thus, we

deduce that

VolgSn (S
n) = VolgSn (S

n
+) + VolgSn (S

n
−) = 2VolgPn (U

(n+1)) = 2VolgPn (P
n).

− An alternative way to show (11) is to calculate the volumes through tedious computations in our
chosen coordinate systems. Let us pick one of the coordinate charts (U (k), ϕk) on P

n. Using the fact
that for any vector V ∈ R

n we have

det
(
I+ λV · V T

)
= 1 + λ∥V ∥2,

we can compute for the matrix of gPn in the (U (k), ϕk) coordinate chart:

det
(
(gPn)ij

)
= det

[ 1

1 + ∥y∥2
(
δij −

yiyj

1 + ∥y∥2
)]

=
1

(1 + ∥y∥2)n
(
1− ∥y∥2

1 + ∥y∥2
)

=
1

(1 + ∥y∥2)n+1

We can therefore calculate:

VolgPn (P
n) = VolgPn (U

(k))

=

�
ϕk(U(k))

√
det(gPn) dy1 . . . dyn

=

�
Rn

1

(1 + ∥y∥2)n+1
2

dy. (12)
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Switching to polar coordinates (r, ω) ∈ (0,+∞)×S
n−1 ≃ R

n\0 to evaluate the above intergal (noting
that r(y) = ∥y∥, ω(y) = y

∥y∥ ∈ S
n−1 and y = r ·ω) and recalling that the Cartesian and polar volume

forms are related by
dy1 . . . dyn = rn−1drdω,

we compute

VolgPn (P
n) =

�
Rn

1

(1 + ∥y∥2)n+1
2

dy1 . . . dyn

=

�
ω∈Sn−1

� ∞

0

1

(1 + r2)
n+1
2

rn−1drdω

=
(� ∞

0

rn−1

(1 + r2)
n+1
2

dr
)
Vol(Sn−1)

=

√
π

2

Γ(n
2
)

Γ(n+1
2
)
Vol(Sn−1).

On the other hand, on (Sn, gSn), the coordinate chart associated to the stereographic projection
P : Sn \N → R

n covers all of Sn except for a set of measure 0 (the north pole N), we can compute:

VolgSn (S
n) = VolgSn (S

n \N)

=

�
P (Sn\N)

√
det(gSn) dy1 . . . dyn

=

�
Rn

[
det
( 4

(1 + ∥y∥2)2
δij

)] 1
2
dy

=

�
Rn

2n

(1 + ∥y∥2)n
dy

=

�
ω∈Sn−1

� ∞

0

2n

(1 + r2)n
rn−1drdω

=
(� ∞

0

2nrn−1

(1 + r2)n
dr
)
Vol(Sn−1)

=
√
π

Γ(n
2
)

Γ(n+1
2
)
Vol(Sn−1).

Therefore, (11) holds.
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