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2.1 Let (M, g) be a smooth Riemannian manifold and v : [a,b] — M a curve of class C'. Recall
that the length of v is defined as

() = / (o)l de.

We will also define the energy of v by the relation

e = [ Il ar

(a) Show that £(y) is invariant under reparametrizations of ~y (i.e. that it is the same for the
curves v and 7 o h, where h : [a/,b'] — [a,b] is any C' bijection). Is the energy also
similarly invariant under reparametrizations?

(b) Show that
2
(£()” < (b= a)&().
When does equality hold above?

Solution. (a) Let h : [a/, ] — [a,b] be a C! bijection; it is then necessary that h is either everywhere
increasing or decreasing; without loss of generality, we can assume that it is increasing, so that A7 > 0
and h(a') = a, h(V') = b. We can then compute using the change of variables t = h(s):

thon) = [ U5 rems)lds

’
= [ Wonts) )l ds
= [ Fen) )

b
/ @)l dt
().

t::(s)

In the case when h is decreasing, we obtain the same result by noting that dt = —h/(s)ds and
h(a") =b, h(V') = a.

The energy, on the other hand, is not invariant under reparametrizations, as can be explicitly
verified by comparing the energy of the curves v, 7 : [0, 1] — R? with () = (¢,t) and F(t) = (¢, ¢?).

(b) Using the Cauchy—Schwarz inequality for integrals, we can calculate:

= ([ o)
Cauchygchwarz </ab ||'y(t)||2 dt) (/ab 1 dt)
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- -l

Equality holds in the case of the Cauchy-Schwarz inequality only when the integrand is a constant
function; thus, (6(7))2 = (b — a)&(vy) only when ||%(t)]| is constant, i.e. v is parametrized with
constant speed.

2.2 Let (M, g) be a smooth connected Riemannian manifold. For any p,q € M, let C,, be the set
of all piecewise C* curves v : [0,1] — M such that v(0) = p and (1) = ¢. Recall that the
Riemannian distance function d, : M x M — R is defined by the formula

dy(p @) = inf {€(7) |7 € Gy

where /() is the length of v with respect to the Riemannian metric g. Show that (M, d,) is
indeed a metric space.

Solution. First of all, we should notice that the function d, : M x M — R is well-defined, since the
set < L(7)|y € Cp,q} is never empty (as M was assumed to be connected). In order to show that d,

defines a metric on M, we have to establish the following three properties:
1. Symmetry: d,(p,q) = dy(q,p) for all p,q € M.
2. The triangle inequality: d,(p,q) < dy(p,7) + dy(r, q) for all p,q,r € M.
3. Positivity: dy(p,q) = 0, with equality holding only when p = q.

Property 1 follows readily by noting that, if v : [0,1] — M is a piecewise C'! curve satisfying
v(0) = p and (1) = ¢ (and thus belongs to C,,), then the curve —v, defined by

—(s) =71 =)
belongs to C,, (since —y(0) = ¢, —y(1) = p) and
U=) = ()

(in view of Ex. 2.1). Thus,

dy(q.p) = inf {£(7) |7 € Cyp } < inf {6(=) 17 € Cp = dy(p. ).

Repeating the same argument with the roles of p, ¢ inverted, we deduce that d,(p, q) = d,(q, p)-
In order to establish the triangle inequality, we argue as follows: If v; € C,, and v, € C,,, then
the concatenated curve 3 U~y : [0, 1] — M, defined by

7(2s), se€l0, %],
12(2s — 1), se€ (%, 1]

%Uw®={

satisfies the following conditions:
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® 71 U2(0) =11(0) = pand 71 Ua(l) = 15(l) = ¢

e ;U7 is piecewise O, since it is piecewise C! in the intervals [0, %] and [%, 1] (where it coincides
with a smooth reparametrization of v, and ~,, respectively), and it is continuous at s = %, since
71(1) = 1%2(0) =r.

Therefore, v1 Uy, € Cp 4. Moreover,

1
d
fnum) = [ gm0l ds
0 S

1

T 2s)|| d T 2 1) d
= [ ggniaas [ gus = las

= Ll(71) + £(72)-

Therefore, we can calculate:

dy(p, q) = inf {6(7) |7 € Cp,q}
< inf {E(% Ure) |7 € Cpry 2 € qu}

— inf {(31) + €(32) [ 1 € Cpp 72 € Crg }
< dy(p, 1) + dy(r, q),

i.e. the triangle inequality holds.
Since £(y) > 0 for any piecewise C! curve 7, it follows readily that d,(p, ¢) = 0 for any two points
p,q € M. Thus, it only remains to show that

dy(p,q) =0 = p=gq

To this end, we will argue by contradiction and we will assume that there exist points p, ¢ € M such
that d,(p,q) = 0 and p # ¢. Let also (U, ¢) be a local coordinate chart around p, with associated
coordinates (z!,...,2™). By shrinking U if necessary, we will assume that ¢ ¢ U (this is possible
since p # ¢). Our aim is to show that, for ¢ > 0 sufficiently small, a curve « starting at p and
having length less than e cannot escape U (and thus reach ¢); in order to show that, we will rely
on comparing the length (with respect to g) of any curve v near p with the Euclidean length of its
image ¢ o~y in R".

Let us consider the matrix [g](p) = [gi;](p) of the components of g with respect to (x!,... z")
at the point p. Since [¢g](p) is a symmetric n X n matrix (where n = dimM), it is diagonalizable;
and because it is positive definite, its smallest eigenvalue A is strictly positive. The last statement
implies that, for any vector V = (V! ... V") € R", we have

VI lglp) -V 2 AV V.

Since g was assumed to be a smooth Riemannian metric, the matrix g[p| varies continuously with
p € U; thus, there exists a constant 6; > 0 such that

VIgl(z)-V > i/\VT Vv (1)
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for all points z in the coordinate ball Bs, (p), where

B ={zeus (Lo -awr)’ <o)

Note that, since U is an open neighborhood of p, by possibly choosing a smaller §; we can also assume
that
clos(Bs, (p)) C U.

(i.e. that clos (351 (p) does not intersect the boundary of U; a consequence of this is that, for p < 4,
the closure of the coordinate ball B,(p) in M does not contain any point of the boundary dB;, (p).).
Let us consider the auxiliary metric

g = (dz")* + - + (da")?

on U (note that this is simply the pull-back metric ¢.gg of the Euclidean metric on R” via the map
¢ :U — R™). Then the inequality (1) can be rephrased as

1
g(v,v) = Z)@E(v, v) for all points ¢ € Bs, (p), and tangent vectors v € T, M. (2)

The above inequality now implies the following bound for curves in By, (p): If 7 : [a,b] — Bs,(p) is a
piecewise C! curve, then

\

g(7, )|l dt

1 \b
5 / )| dt
1.1 L.
= 5)\2/ ¢*9E(’Y ”Y)Hdt
1 \b
= ;A2 g5 ( dt (¢07))Hdt

and, thus,
_ I _
() = 522 te(¢07), (3)
where (g (¢ o 7) is the Euclidean length of the curve ¢ o5 : [a,b] — R™.
Suppose, now, that € > 0 has been chosen small enough in terms of A and §; (as we will see in a

moment, it suffices to choose € < %)\iél). Since d,(p,q) = 0, the definition of d, implies that there
exists a curve v : [0, 1] - M with v € C, , such that

l(y) <e.

Our aim is to show that, if ¢ has been chosen appropriately, the curve v must be contained in
clos(By, (p)) C U. We will achieve this using a continuity argument: Let us define sg € (0, 1] by the
relation

S0 = sup {s* € [0,1] : ¥ljo,s,) C By, (p)}
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Note that so > 0 since v(0) = p € Bs, (p) and B, (p). The definition of sy also implies that

’7|[0,so) = Us*<so'7‘[0,s*] C B<51 (p) (4)

Since 7y is continuous, we deduce that

Y(s0) € clos(Bs,(p)).

Moreover, if sy < 1, we must necessarily have that

7(s0) € 9Bs, (p)- (5)

This can be seen as follows: if v(so) lies in the interior of clos(Bs,(p)) (which is the same as Bs, (p),
which is an open set), then, by continuity of v, there exists an e; > 0 such that ~(s) € Bs,(p) for
all s € [so, So + €), which, together with (4), contradicts the definition of so as the supremum of all
points s, with the property v|p..) C Bs, (p).

Thus, in order to show that sy = 1, it suffices to show that

7(50) € Bc51 (p))7 (6)

Le. that y(so) lies strictly in the interior of clos(Bs, (p)).
Since Y|j0,59) C Bs, (p), we can apply the bound (3) to get

1.1
{(Yo.50)) = A CE(d 0 Y]j0,50))-

Thus, since €(7]jos0)) < (7) <€ and € < i)\i(h, we obtain

1 1

CE(d o 7j0,50)) < 2A72€ < 551.

Since the curve ¢ o 7lj,,) in R™ starts from ¢(p) and has Euclidean length at most %51, it must stay
within the closed Euclidean ball of radius %51 centered at ¢(p); equivalently:

7’ [0,50) C clos (Béél (p)) .

Since 7 is continuous, this implies that
V(s0) € CIOS(Béal (p)) C Bs,(p),
i.e. (6) holds; therefore, sy = 1. From the definition of sq, this implies that

Yo, C Bs, (p).

But this is a contradiction, since (1) = ¢ and we assumed that v(q) lies outside U (and, hence,
B51 (p))
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2.3 Forn > 1, let N = (0,0,...,0,1) be the north pole of the unit sphere 5" in R**'. Let
P : 5"\ N — R" be the stereographic projection via N onto the hyperplane "™ = 0, that is
to say, for any y € S"\ N, P(y) = (1, - ..Yn) is defined so that the point (yi, ..., ¥y, 0) belongs
to the straight line in R"™! connecting N to .

(a) Show that the round metric ggn, i.e. the metric induced on S" from the Euclidean metric
on R"1 takes the following form in the coordinate chart determined by P on "\ N:

gen = dy? +dys + ... + dyi)

4
(1+ [lylI2)® (

(b) Show that the map P : (S", gsn) — (R™, gg) (where gg is the Euclidean metric on R") is
conformal.

(c) Consider the map F': R"\ 0 — R™\ 0 given by

Show that, in the coordinate chart above, the map F' defines an isometry of 5"\ {N, S}
to itself, where S = (0,0,...,0,—1) is the south pole of §”. Does this map extend as an
isometry on the whole of §"7

Solution.(a) It is easy to verify that the map P : 5"\ N — R", sending (2!,...,2""!) € S\ N to
(y,...,y") € R", takes the form
i 2
Yy = 1 — gntl’
Using the fact that ||z[|> = 3277 (2")2 = 1 on S, we also obtain the relation
Iyl =1
lyll> +1

The inverse map P~! (i.e. the parametrization of 5"\ N by R") takes the form

] 2 N
P 1<y1’.”,yn):(—y1,“., yn’ )
L+ [lyl|? L+ {lyll>™ "yl +1
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The metric gs» on 5"\ N in the parametrization by the map P~! is simply the pull-back of the

Euclidean metric ggﬂ) on R™™! through P~!. One way to compute gs» is, thus, to compute the

differential of the map P~! and use the formula

o(P~H*g(pP~1)s
Plgmt) = (g, A .
( )zg (gE ) B ayl ay]

A faster way is to use the fact that, since

n+1

gu = "(dz")?, (7)

a=1

we have

n+1

Prlgptt = (Pl (8)

a=1
n+1

Since, as we computed earlier,

(Pil(y)) 1+Hy”2y for ¢« < m,
2
—1
st _ Ll
R T
we have:
; 2 2 4
d(P~! Z:d<— ) - dy - — dy? 1
W) = mrY) ~ we® T O e Zy y fori<

et g1 J
o)™ =) = o

Thus, from (8) we infer:

n

2 , 4 e~ A2
P;lg(TH_l) — (—dyl o —yz y]dyj> + ( y dy )
o 2_1: 1+ [ly[]? (1+[yl[*)? ]Z_; 1+ ||y|| Z

4 - 7\ 2
=~ T )

(b) The statement that the map P : (5" \ N, gs» — (R", gg) is conformal is equivalent to saying
that, in the (y!,...,4") coordinates on S\ N determined by the chart P, the metric gs» takes the
form

gsn = f-gE
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for some smooth and positive function on 5™\ N, where gg = Y, (dy*)?. In part (a) of this exercise,
we established that this is indeed the case, with

fly) = !

(14 [lylI*)*

(c) The map F corresponds to a reflection of S" \ {N, S} across the hyperplane {z"™! = 0};
hence, it should be obvious that it is an isometry and that it extends as an isometry to the whole
of 5". However, let us verify this fact by computing F,gs» in the stereographic coordinate system
considered here.

Since

4 - ‘
= dz2
9o = T )

¢

[l

(noting that || F(z)|| = i1 ):

we calculate similarly as before for y* = F'(z) = o

4 " .
Figsn = (F.dy')®
(1 + [[F(2)[]?)? 2

4 7 2

T ||F<:c>||2>2 2_(dF @)
" 20w dad \ 2
1+” QZ(HIIP_Z )

i=1 J=1

)t ( TR R N U GO
= (dz*)* — —— y x'2/dz’dr’ +
(x> +1)? ; l* [l]° Z

jlk
n

4 4(x)?
:W<; ZE ||$||QZZJ: xjdx’d$3+z ||(x||)4 ZZ kd:)ﬂd:{;)

=1 j=1 =1 j=1 k=

Ik dad da® )

4 u ,
= dz')?
e+ 17 2 ()

= gsn.
Thus, F' is a local isometry; since F' is obviously a homeomorphism from R™ \ 0 to itself, we deduce
that F' defines an isometry from 5™\ {N,S} to itself. Tt is also easy to verify that any sequence
{yr }ren converging to 0 is mapped to a sequence F'(y;) converging to oo, and vice versa; hence, F
extends as a continuous map from 5" to itself, mapping N to S; by continuity, this extended map F
has to be an isometry.

2.4 Let M be a smooth manifold of dimension n.

(a) Let V be a smooth vector field on M such that V(p) # 0 for some p € M. Show that
there exists an open neighborhood U of p and a local coordinate system (y', ... 4™) on U
such that V = 8%1 onl.
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(b) For V as above, let W be another smooth vector field on M such that W(p) # 0 and
W (p) # V(p). Is it always true that we can find a local coordinate system (y!,...,y") on
a neighborhood U of p as before such that V = 8%1 and W = 3%2 on U? (Hint: Consider
the commutator [V, W|(f) =V (W (f)) — W(V(f)) for a suitable function f € C>*(M).)

(¢) Let w be an 1-form on M such that w(p) # 0 for some p € M. Does there always exist a
local coordinate system (y',...,4™) on a neighborhood U of p such that w = dy' in U?

Solution. (a) Let us start by fixing a coordinate chart ¢’ : U’ — ¢'(i’) C R™ on an open neigh-
borhood U’ of p in M. By composing ¢’ on the left with a translation y — y + yo in R", we can
assume without loss of generality that ¢/(p) = 0. Let (y!,...,y") be the local coordinate system on
U associated to ¢ (note that y'(p) = 0 for i = 1,...,n). In this coordinate system, the vector field
V' can be expressed as

V=V 0 -

ay*

Since V(p) # 0, at least one of the components V*(p) must ne non-zero; without loss of generality
we can assume that V!(p) # 0 (otherwise, we can simply relabel the coordinate functions). Since V
is a smooth vector field, V1(p) # 0 in an open neighborhood W of p.

We will construct the coordinate system (z!,...,x™) by introducing an appopriate change of
coordinates on a neighborhood of 0 in R” and then pulling back these new coordinates to M via the
chart ¢’. More precisely, let ¥ :V C R* — V' C ¢'(U’') be a diffeomorphism between subsets of R".
Then, it is easy to verify that, in the local coordinate system (z!,...,z") on (¢/)1(V') Cc U c M
associated to the coordinate chart ¢ = W~'o(¢/)"! on (¢/)~'(V)," the coordinate vector fields {72},

can be expressed in terms of { azi »_, by the relation

0 .0
ox? oy’

(since the expression of the coordinates y' as functions of z' is y* = ¥(z)). Therefore, in order to

construct a local coordinate system (z!,... ™) around p in which V = O it suffices to construct

a smooth function ¥ : W — R™ for a domain ¥V C R" containing 0 such t}?gt:
1. ¥(0) =0,
2. DV|,— is invertible,
3. ¥ =V"0(¢)"' oW in an open neighborhood ¥V C W of 0.

In view of the inverse function theorem, Condition 2 above would imply that ¥ is a local diffeo-
morphism when restricted to a (possibly small) open neighborhood V of 0. Since 0 € ¢'(U") and
U (0) = 0 (according to Condition 1), by possibly choosing V even smaller, we can guarantee that
U(V) C ¢'(U'); hence Vio (¢/)"' o ¥ (in the statement of Condition 3) would be a well defined

function on V.

'Recall that, in this case, ' = (¥ ~1)? 0 ¢; thus, y* = (¢/)' = (Vo U~ Lo ¢') = (¥(2))".
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In order to construct a local diffeomorphism W as above, we will make use of the flow map
associated to the vector field V = (V1o (¢/)7%, ..., V"o (¢/)7!) on ¢/(U') C R (note that this is
simply the pushforward of the vector field V via the map ¢'). For a smooth vector field V' defined
on an open domain €2 of R", the classical theory of ODEs guarantees the existence of an open set
Q C R x Q containing {0} x Q and a smooth map ¥ : @ — Q such that

(9)
(this statetement can be equivalently stated in a more familiar language as follows: The initial value
problem

{@x =V(x),

JI(O) =1z € ()

admits a unique smooth solution x|z, | : I, — € on a maximal open interval I, C R containing 0;
moreover, x|z, ] and I, depend smoothly on the initial value x.)

Let ¥ : © — R” be the map obtained by applying the above result with Q = ¢/(U’). Let § > 0
be small enough so that (—d,0) x Bs[0] C Q (where B(g") [0] is the Euclidean ball around 0 € R™ of

radius ). Let us consider the map ¥ : (—4,0) X Bg”_l)[O] — R defined by
Uz, ... ") = U(z0,2% ..., 2")

(this is simply the map that takes each point on the surface {z' = 0} N B5[0]™ and maps it to its
image under the flow of the vector field V for time ¢t = x'). In view of (9), we can readily compute:

1. W(0) = ¥(0;0) = 0.
2. We can calculate at (z',...,2") = (0,...,0):
I (0) = 9,0 (¢ 71, . .. )| (st )= (0:0,...,0) = Vi(0) forj=1,...,n
and, for ¢ > 2:

ai\I/j (0) = ajl @j (t7 i‘l, e ,[En)|(t;5¢1 ..... z™)=(00,...,0)
= 6.

Therefore, the matrix of the differential DV at 0 takes the form

[V1(0) V2(0) V(0)]

1 0O ... 0
[DW]|—0 = 0 1 0 ,
0 0 1]

which is invertible since V1(0) = V1(p) # 0.
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81 ( ’ ’an):at~(t;i’1, y L )|(tm1 z2,..,2")=(x1;0,22,...,z")
= V(\i/(xl;O,xQ,. ,x"))
=V(¥(',...,a"

and, hence - ‘
OV ' =VioU =Vio(¢) oW,

Therefore, setting V = (-4, ) x Bg”fl) [0], the map ¥ defined above satisfies Conditions 1-3; hence,
as explained earlier, ¢ = Ut o ¢ : (¢/)"1(¥(V)) CU' — V is a coordinate chart around p in which

9 _
oxl

(b) No this is not true. In any local coordinate system (z',..., x2™), the coordinate vector fields

commute with each other, i.e. for any f € C*°(M):

[%’ %](f) = 8?51‘ <8x3f> 0(3:] <aiif>

(note that, for any two vector fields X,Y € I'(M), the commutator [X, Y] is also a vector field since,
when applied to smooth functions by [X,Y]|(f) = X (Y f) — Y (X ), it satisfies the product rule; this
will be an exercise for next week). Thus, if [V, W] # 0 for V,W € I'(M), then these vector fields
cannot be simultaneously written as coordinate vector fields in any local chart. An example of two

such vector fields is (in a given coordinate chart (x!, ..., 2"),
0 0
V=—"0V\ W=z,
Oxt Ox?
since

V. W]= ai;( 1%) _xla;(ail) 527 "

(¢) Noj in fact, any 1-form w on an open set Y C M that can be written as df for some f € C*(U)

(i.e. is locally ezact) is also locally closed, i.e. its components satisfy in any local coordinate system
(x',...,2") in U:

Ow;  Ow;
Ozt Oxi
(since w; = % in this case). For instance, the 1-form & on R? wich takes the form (in Cartesian
coordinates)
W = x’dx’
satisfies
Ow, 8w2 _120
0r  Ox'

and, hence, cannot be written as df for any smooth function f on any domain of R2.
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*2.5 Recall that the real projective space P"(R) is the space of straight lines in R"*! passing through
the origin. In other words, P"(R) is the space of equivalence classes [x] = {y € R"*'\ {0} : y =
Az, A # 0} in R*™1\ {0}.
The space P"(R) has a natural manifold structure; a smooth atlas on P"(R) is given by
{U® | ¢, 37+, where
Uk = {[(xl, L,z e PYR) : aF £ O}

and the maps ¢, : UY¥) — R™! are homeomorphisms defined by the following relation for qb,j:

| y) for j <k —1,
oty .y = [(xl, e ,x"“ﬂ with 2/ = ¢ 1 for j =k,
'~ for j > k+ 1.

o Show that the transition maps ¢; o gbj_l, i#7€{l,...,n+ 1}, are of class C* (in fact,
real analytic) on their domain of definition.

Let us equip P"(R) with the standard projective metric gpn; the components of the matrix for
the metric in each of the coordinate charts associated to ¢, above take the following form:

1 Yy
RS S
7] ERN S

o Show that the natural map F : (S", gsn) — (P", gpn) defined by F(x) = [z] (i.e. sending
each point on 8" C R"™! to the corresponding straight line connecting it to 0) is a local
isometry.

o Does there exist a global isometry between (S™, gs») and (P", gpn)? (Hint: Compare the
volumes of (S™, gsn) and (P™, gpn).)

Solution. o For any k € {1,...,n+ 1}, we have the following expressions for the maps qb,gl and ¢y:

yl for j <k —1,
ot (") = [(2f . 2"] with o/ = {1 for j =k,
'~ for j > k+ 1.

and

33'1 xk—l xk—i—l $n+1

or([(zh, ..., 2" ™)) = <ﬁ""’ ).

Note also that, for any a # b € {1,...,n 4+ 1}, we can describe the intersection of the domains /(*)
and U® as follows:

3 g e ey

ok gk ak
UINY® = {[(:cl,,x”)} 2% # 0 and 2° # 0}.

Thus:

) R\ {y* #0}, ifb<a,
¢a(u( )mZ/{(b)) = {[R”\{yb_l #0}, ifb>a.

Therefore, for any a # b € {1,...,n+ 1}, we can directly compute that the transition map ¢ o ¢,
maps ¢q (UY NUD) to ¢, (U™ NUY) by the following formulas:
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o If b < a:
L,oi<b—loriza+l,
drod (Y, ... y") =(",...,2") where 2= 9;17 b<i<a-—1,
#, 1= aq.
o Ifb> a:
Z—Z, 1<a—lori>b+1,
¢b0¢;1(y1,--.,y”)=(zl, ,z”) where 2' = %, 1= a,
yi—l

Thus, ¢, o gbb_l is a real-analytic homeomorphism.
o In order to show that F : 5" — P" is a local isometry, we have to show that

F*gl?" = ggn.

To this end, it suffices to show that this is true in the coordinate system on S™ \ {N} provided
by the stereographic projection P (see Ex. 2.3) and the coordinate system determined by ¢,
on UMY < P k € {1,...,n} (even though these systems do not cover all of S" and P", the
same arguments apply for any k£ € {1,...,n + 1} in the coordinate system covered by stereographic
projection on 8"\ {(0,...,0,2F = 1,0,...,0)} and on U*  P", simply by relabelling the coordinate
axis so that z® <+ 2"*1). The expression of the map F in these coordinate systems is simply the
composition ¢, 1 o F o P71 which can be computed explicitly (using the formulas that we have for
each of those maps) as follows:

S 2 T
T PR T P T B

oo ([(mt o e L =0)])
T TR T
B 2! 2"
(= e

¢n+10~7:opfl(yla---7yn):¢n+10~7:<

Using the auxiliary formula
lylldliyll = y'dy’
i=1

(derived by differentiating the relation ||y[* = >_1" ,(y")?) we can therefore, compute, in these co-

ordinates in the case when & = n + 1 using 2* for the coordinates associated to P" and y* for the
coordinates associated to S"):

n

ij=1
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TR (Fy)(Fy)) | |
L — 5ij — d(F(y))d(F(y))
TFE X (s = T g @) A wy)
n 4y'y? . .
1 (FE=DE 2y° 2y7
— Siv — )d d
4|y Z <( v 4||y||2 ( 2 _ ) ( 2 _ ))
_ (Ul =1)? 4y'y? 2y’ 2y’
O;i — d d
(TS Z<(ﬂ 2 e ) e =)
([ly]* = 1)? 4y'y? 2dy’ 4y ly ||
<||y||2+1>22( 5= e (o =1~ Gl = i)
2dy’ 4y |y
X — d||y
(=1~ i = )
_ Uyl —1)? 4ytyd
(vl +1)2 Z::< T () + 1)
Slylly Slylly’
Sdy'dy’ — —dyjd Yl = = dy'd||y
<<|| Fo1)p Ml — 1 Wl = g = e/ dlv|
16||y[*y"y"
— e 72 (d
~ Tz =il )
Ull? =102 [ O~ d6,dy'dyy 16 o
= — Yyl dy'dy’
e Zl<||y||2—1>2 TolP — D2((IIE + 1?) Z
8
_ Sy Z 5,y dlyl + dydly])
(lol? — 17 2~
A 32J’y" S (gl + Pyl
(ol — (7 + 17 2

WZ o )~ (= 77 gyi)z(yj)“d”y”)z)
) EHZH—Iii (Z ﬁ?ﬁzly—idly; (WP _116>!<y\‘||;||2 T’
- T O+ = )’
T ) = (= 1>2(d”y”>2>
m Z Sy’ dy’

i,7=1
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= gsn-

o There is no global isometry between (P", gpn) and (S", gs») (in fact, these two manifolds are
not even homeomorphic when n > 2, since m(P") = Zy and 7,(S™) = 0 in that case, but we will not
assume knowledge of homotopy invariants in this course). One way to see this is by comparing the
corresponding volumes (a global isometry between Riemannian manifolds always preserves volumes).
We will show that

Vol (8") = 2Vol,,.,, (P"). (11)

There are two ways to infer the above result:

— One is to notice that, when restricted to any one of the open hemispheres S = §" N {z"™! > 0}
and 8" = S"N{z"*! < 0}, the map F is a bijection between S% and U™+ C P™. Therefore, since F
is a local isometry, it restricts to a global isometry between (87, ggn) and (U gpn) (and similarly
for 5™). As a result:

Volg,., (U™™) = Vol,, (S7) = Vol (™).

Notice that the set P™ \ U™V is of measure 0 in P" (its intersection with any one of the other
coordinate domains U, [ < n, is a codimension 1 hypersurface) and thus does not contribute to the
volume of P". Similarly, 8"\ (57 US%) (which is simply the equator of §") has volume 0. Thus, we
deduce that

Volge, (") = Volg, (S) + Vol (8™) = 2Vol,, (U™)) = 2Vol,,, (P™).

gpn

— An alternative way to show (11) is to calculate the volumes through tedious computations in our
chosen coordinate systems. Let us pick one of the coordinate charts (4*), ;) on P". Using the fact
that for any vector V € R™ we have

det (1+ AV -VT) =14+ A||V|?,

we can compute for the matrix of gpn in the (U®) ¢;) coordinate chart:

det (1) = et [ e (= )|

L[yl 14yl

1 ( P )
L+ gl N 1+ yl?
1
(1 + flyl2)m+t

We can therefore calculate:
VOlg[P” ([Pn) = VOlg[Pn (u(k))

= / Vdet(gpn) dy* ... dy"
b1 (UR))

1
/ﬂ?” (1+ i)™=
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Switching to polar coordinates (r,w) € (0, +00) x 8"t ~ R"\ 0 to evaluate the above intergal (noting
that r(y) = ||y||, w(y) = 7% € " ! and y = r - w) and recalling that the Cartesian and polar volume

||y||
forms are related by

dy' ... dy" = r" drdw,

we compute

On the other hand, on (5", gs»), the coordinate chart associated to the stereographic projection
P : 5"\ N — R" covers all of 5" except for a set of measure 0 (the north pole N), we can compute:

Vol (") = Volg, (S" \ N)

:/ Vdet(gsn ) dy' ... dy
P(S™\N)
4 3
- / et (Grpymed)]
2n
= —F—d
/Rn 1+Hy||) Y

/ / r"drdw
wESn 1 1 + T

002nn1

gsn

dr)\kﬂ(S“ 1

TR

\/_ VOI(S” .

|+

( )

Therefore, (11) holds.
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